

DEPARTMENT of Science

COURSE OUTLINE - Winter 2023

MA 1020 (A3, AS1): Applied Linear Algebra – 3 (3-1-0) UT 60 Hours for 15 Weeks

Northwestern Polytechnic acknowledges that our campuses are located on Treaty 8 territory, the ancestral and present-day home to many diverse First Nations, Metis, and Inuit people. We are grateful to work, live and learn on the traditional territory of Duncan's First Nation, Horse Lake First Nation and Sturgeon Lake Cree Nation, who are the original caretakers of this land.

We acknowledge the history of this land, and we are thankful for the opportunity to walk together in friendship, where we will encourage and promote positive change for present and future generations.

INSTRUCTOR: Dr. Brian Redmond **PHONE:** 780 296 0055

OFFICE: L215 **E-MAIL:** bredmond@nwpolytech.ca

OFFICE HOURS: TBA

CALENDAR DESCRIPTION:

Vectors and matrices, solution of linear equations, equations of lines and planes, determinants, matrix algebra, orthogonality and applications (Gram-Schmidt), eigenvalues and eigenvectors and applications, complex numbers will be covered in the course.

PREREQUISITE(S)/COREQUISITE:

MA 1000

REQUIRED TEXT/RESOURCE MATERIALS:

Linear Algebra with Applications by K. Nicholson

Lyryx Account: Please follow this <u>link</u> and instruction to register.

Calculators are not permitted.

DELIVERY MODE(S):

On campus, f2f. Lectures are Tuesdays and Thursdays 10:00 AM - 11:20 AM in J226 and seminars are Mondays 10:00 AM - 10:50 AM in H211.

COURSE OBJECTIVES:

The aim of this course is to present the fundamental ideas, techniques, and applications of linear algebra.

LEARNING OUTCOMES:

At the completion of this course, a student will be able to:

- Solve systems of linear equations using Gauss-Jordan elimination
- Perform matrix arithmetic: addition, subtraction, scalar and matrix multiplication, transposition, inversion, etc.
- Calculate determinants using cofactor expansion and row/column reduction
- Use Cramer's rule and polynomial interpolation in simple applications
- Express an invertible matrix as a product of elementary matrices
- Add and subtract intrinsic vectors and compute dot products, cross products, projections, angles, areas, and volumes in 2- and 3-space
- Solve geometric problems involving points, lines, and planes
- Determine linear independence of vectors and find bases for and dimensions of subspaces of \mathbb{R}^n
- Use the Gram-Schmidt algorithm to find orthonormal bases for subspaces of \mathbb{R}^n
- Compute eigenvalues and eigenvectors and perform diagonalization and orthogonal diagonalization (with applications to conics)
- Compute the pseudo-inverse of a matrix, the best-approximation (least-squares) solution to inconsistent systems, and least-squares error
- Perform elementary arithmetic with complex numbers in both standard and polar form, and compute roots of unity
- Compute complex inner products, eigenvalues, and eigenvectors in \mathbb{C}^n
- Generalize basic knowledge of \mathbb{R}^n and \mathbb{C}^n to abstract real and complex inner product spaces and abstract linear transformations

TRANSFERABILITY:

Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at the Alberta Transfer Guide main page http://www.transferalberta.ca.

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. **Students** are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS:

Assignments: 20% Midterm: 30% Final Exam: 50%

GRADING CRITERIA:

Please note that most universities will not accept your course for transfer credit **IF** your grade is **less than C-**.

Alpha Grade	4-point	Percentage	Alpha	4-point	Percentage
	Equivalent	Guidelines	Grade	Equivalent	Guidelines
A+	4.0	90-100	C+	2.3	67-69
A	4.0	85-89	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62

B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE/TENTATIVE TIMELINE:

Tentative Timeline (subject to change):

Week	Topics	Approximate Sections in Textbook	Important Dates
2 January – 8	Lecture 1: Systems of Equations	1.1	Course begins on
January			Thursday, January 5
9 January – 15	Lecture 2: Gaussian Elimination	1.2, 1.3, 1.6	Lyryx Assignment #1
January	Lecture 3: Homogenous Systems and		Due: Friday, January
	Applications		13
16 January –	Lecture 4: Matrices – First Properties	2.1, 2.2	Lyryx Assignment #2
22 January	Lecture 5: Matrix-Vector Multiplication		Due: Friday, January
			20
23 January –	Lecture 6: Matrix Multiplication	2.3, 2.4, 2.8	Lyryx Assignment #3
29 January	Lecture 7: Matrix Inverses and		Due: Friday, January
	Applications		27
30 January – 5	Lecture 8: Linear Transformations	2.6, 3.1	Lyryx Assignment #4
February	Lecture 9: Determinants and Cofactor		Due: Friday,
	Expansion		February 3
6 February –	Lecture 10: Determinants and Matrix	3.2, 2.5	Lyryx Assignment #5
12 February	Inverses		Due: Friday,
	Lecture 11: Elementary Matrices		February 10
13 February –	Lecture 12: Vector Geometry	4.1, 4.2	Lyryx Assignment #6
19 February	Lecture 13: Projections and Planes		Due: Friday,
			February 17
20 February –	Winter Break		
26 February			
27 February –	Lecture 14: Cross Product	4.3, 4.4	Midterm: Tuesday,
5 March			February 28
6 March – 12	Lecture 15: Vector Space \mathbb{R}^n	5.1, 5.2	Lyryx Assignment #7
March	Lecture 16: Linear Independence and		Due: Friday, March
	Dimension in \mathbb{R}^n		10

13 March – 19	Lecture 17: Orthogonality in \mathbb{R}^n	5.3, 5.4, 8.1	Lyryx Assignment #8
March	Lecture 18: Orthogonal Complements		Due: Friday, March
	and Projections in \mathbb{R}^n		17
20 March – 26	Lecture 19: Diagonalization	3.3, 5.5, 8.2	Lyryx Assignment #9
March	Lecture 20: Orthogonal Diagonalization		Due: Friday, March
			24
27 March – 2	Lecture 21: Best Approximation and	5.6, Appendix	Lyryx Assignment
April	Least Squares	A	#10
	Lecture 22: Complex Numbers		Due: Friday, March
			31
3 April – 9	Lecture 23: The Vector Space \mathbb{C}^n	8.7, Parts of	Lyryx Assignment
April	Lecture 24: Introduction to Abstract	Chapters 6, 7,	#11
	Linear Algebra	and 10	Due: Thursday, April
			6
10 April – 16	Review		Lyryx Assignment
April			#12
			Due: Friday, April 14
17 April – 23	Final exam period		
April			
24 April – 30	Final exam period		
April			

STUDENT RESPONSIBILITIES:

Please expect to spend a minimum of 10 hours per week doing homework.

STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the Northwestern Polytechnic Calendar at https://www.nwpolytech.ca/programs/calendar/ or the Student Rights and Responsibilities policy which can be found at https://www.nwpolytech.ca/about/administration/policies/index.html.

Additional Information (Optional):

Instructors may add whatever they want here.

^{**}Note: all Academic and Administrative policies are available on the same page.