

SCIENCE DEPARTMENT

COURSE OUTLINE – WINTER 2024

CS 1150 (A3): Elementary Data Structures 3 (3-0-3) 06 Hours for 15 Weeks

Northwestern Polytechnic acknowledges that our campuses are located on Treaty 8 territory, the ancestral and present-day home to many diverse First Nations, Metis, and Inuit people. We are grateful to work, live and learn on the traditional territory of Duncan's First Nation, Horse Lake First Nation and Sturgeon Lake Cree Nation, who are the original caretakers of this land.

We acknowledge the history of this land and we are thankful for the opportunity to walk together in friendship, where we will encourage and promote positive change for present and future generations.

INSTRUCTOR:	Ubaid Abbasi	PHONE:	780-539-2016
OFFICE:	C-427	E-MAIL:	UAbbasi@nwpolytech.ca
OFFICE HOURS:	11:30-12:30 Monday or appointment by email		

CALENDAR DESCRIPTION:

The course provides a review of programming principles (specification, implementation and testing), and an extension of object-oriented concepts from CS1140 including data abstraction, modular program construction and program reuse. The emphasis is on dynamic data structures (e.g. lists, string, stacks, queues), and their associated algorithms (e.g. recursion, traversal, sorting, searching, hashing).

PREREQUISITE(S)/COREQUISITE: CS1140

REQUIRED TEXT/RESOURCE MATERIALS:

Introduction to Java Programming 12th Edition, Comprehensive Version, By Y. Daniel Liang, Pearson Publishing, ISBN 12th Edition 9780136520238

The 11th edition is acceptable ISBN 11th Edition 9780134671048

Note: Additional handouts will be provided in class.

DELIVERY MODE(S):

This course includes 3-hours of lecture per week and a 3-hour lab per week

Lectures:	J202	Monday, Wednesday	10:00 - 11:20AM
Labs:	G111	Monday	02:30-05:30PM
	G111	Tuesday	02:30-05:30PM

LEARNING OUTCOMES:

By taking this course, students will gain the ability to:

- Analyze problems, design algorithms and data structures to implement computational solutions to problems using an object-oriented computer language.
- Design and implement object-oriented classes, using inheritance and polymorphism.
- Design and implement array based and linked data structures like strings, stacks, queues, lists, trees, heaps, sets, dictionaries and graphs.
- Describe and implement common algorithms related to searching, sorting, traversals, and hashing.

TRANSFERABILITY:

UA, UC, UL, AU, KUC, GMU.

*Warning: Although we strive to make the transferability information in this document up-to-date and accurate, the student has the final responsibility for ensuring the transferability of this course to Alberta Colleges and Universities. Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at Alberta Transfer Guide main page http://www.transferalberta.ca or, if you do not want to navigate through few links, at http://alis.alberta.ca/ps/tsp/ta/tbi/onlinesearch.html?SearchMode=S&step=2

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. **Students** are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS:

Your final grade will be determined in the following manner:

Lab Assignments	20%
Quizzes(2-4)	20%
Midterm	25%
Final Exam	35%

GRADING CRITERIA: (The following criteria may be changed to suite the particular

course/instructor)

Please note that most universities will not accept your course for transfer credit **IF** your grade is **less than C-**.

Alpha	4-point	Percentage	Alpha	4-point	Percentage
Grade	Equivalent	Guidelines	Grade	Equivalent	Guidelines
A+	4.0	95-100	C+	2.3	67-69
А	4.0	85-94	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62
B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE/TENTATIVE TIMELINE:

Sequence	Торіс	
Week 1	Objects and Classes: Chapter 9	
	Defining Classes & Creating Objects	
	Constructors, Static Variables and Methods	
	Visibility Modifiers, Data Fields Encapsulation	
	Array of Objects and Scope of Variables	
Week 2	Object Oriented Thinking: Chapter 10	
	Class Abstraction & Encapsulation	
	Objects and Class Relationships	
	Primitive Types and Wrapper Class Types	
	String Class	
Week 3,4	Quiz 1	
	Inheritance and Polymorphism: Chapter 11	
	Superclasses and Subclasses	
	Overriding and Overloading	
	Polymorphism	

	Dynamic Binding			
	Protected Data and MethodsPreventing Extending and Overriding			
Week 5	Exception Handling : Chapter 12			
	Exception Types			
	• Use of Exceptions			
	Re-throwing Exceptions and Chained Exceptions			
	Custom Exception Classes			
Week 6	Abstract Classes and Interfaces: Chapter 13			
	Abstract Classes			
	• Interfaces			
	Class Design Guidelines			
Week 7	Generics: Chapter 19			
	Defining Generic Classes and Interfaces			
	Generic Methods			
	Raw Types and Backward Compatibility			
	Wildcard Generic Types			
	Restriction in Generics			
Week 8	Review + Midterm			
Week 9	Developing Efficient Algorithms: Chapter 22			
	Algorithm Efficiency and Big O Notation			
	Analyzing Algorithm Time Complexity			
	Determining Big O			
	Introduction to Dynamic Programming			
Week 10,11	Linked Lists, Stack and Queues: Chapter 24			
	Common Operations for Lists			
	Array Lists			
	Linked Lists			
	Stack and Queues			
	Priority Queues			
	Quiz 2			
Week 12,13	Recursion, Searching and Sorting: Chapter 18, 23, 25			
	Recursion			
	• Insertion Sort, Bubble sort, Merge Sort, Quick Sort and Heap Sort			
	Binary Search Trees			
Week 14,15	Introduction to Hashing and Graphs: Chapter 27 and Chapter 28			

STUDENT RESPONSIBILITIES:

- The Student must pass the theory/concepts portion of the course in order to qualify for a passing grade for the term. In other words, a student must obtain 40 out of a possible 80 points (from exams/quizzes) before adding the lab assignment marks to compute the final grade. If you cannot achieve the required 50% (on exams) then regardless of your lab assignment grades, you cannot pass the course.
- No late assignments will be accepted. The student is responsible for adhering to all requirements as specified for each assignment.
- When necessary, lab time may be utilized for lecturing on specific Java features. The remainder of the lab time will generally be used as "hands-on" programming time.

STATEMENT ON PLAGIARISM AND CHEATING:

Academic Misconduct will not be tolerated. For a more precise definition of academic misconduct and its consequences, refer to the Student Rights and Responsibilities policy available at <u>https://www.nwpolytech.ca/about/administration/policies/index.html</u>.

**Note: all Academic and Administrative policies are available on the same page.