

DEPARTMENT OF SCIENCE

COURSE OUTLINE – WINTER 2021

CS 1150 (A3): Elementary Data Structures 3 (3-0-3) 90 Hours for 15 Weeks

INSTRUCTOR:Dr. Ubaid AbbasiPHONE:780-539-2976OFFICE:C427E-MAIL:UAbbasi@gprc.ab.caOFFICE HOURS:Monday 11:00-12:00 PM or appointment by Email

WINTER 2021 DELIVERY: Mixed Delivery. This course is delivered remotely with some face-to-face/onsite components at the GPRC Grande Prairie campus.

- For the remote delivery components: students must have a computer with a webcam and reliable internet connection. Technological support is available through <u>helpdesk@gprc.ab.ca</u>.
- For the onsite components: students must supply their own mask and follow GPRC Campus Access Guidelines and Expectations (<u>https://www.gprc.ab.ca/doc.php?d=ACCESSGUIDE</u>). The dates and locations of the onsite components can be found on the Course Calendar.
- Note: GPRC reserves the right to change the course delivery.

CALENDAR DESCRIPTION:

The course provides a review of programming principles (specification, implementation and testing), and an extension of object-oriented concepts from CS1140 including data abstraction, modular program construction and program reuse. The emphasis is on dynamic data structures (eg. lists, string, stacks, queues), and their associated algorithms (eg. recursion, traversal, sorting, searching, hashing).

PREREQUISITE(S)/COREQUISITE: CS1140 or CS1000

REQUIRED TEXT/RESOURCE MATERIALS:

Introduction to Java Programming by D. Liang. ISBN 10th Edition 0-13-376131-2. Please make good use of the on-line and library resources related to data structures also. See the CS1150 BrightSpace page for additional materials.

DELIVERY MODE(S):

This course includes 3-hours of online lecture per week and a 3-hour of Face-to-Face lab per weekLectures:RemoteMonday1:00 - 2:20 PM

	Remote		Friday	11:30 - 12:50 PM
Labs:	E306	Wednesday	14:45 - 17:35	
	E306	Thursday	14:45-17:35	

COURSE OBJECTIVES:

This course introduces students to:

- Object oriented analysis and design: specification, implementation and testing.
- Fundamental data structures: arrays, stacks, queues, lists, trees, heaps, sets, dictionaries and graphs.
- Algorithms associated with data structures: recursion, traversal, sorting, searching, hashing.
- Asymptotic complexity analysis of algorithms

LEARNING OUTCOMES:

By taking this course, students will gain the ability to:

- Analyze problems, design algorithms and data structures to implement computational solutions to problems using an object oriented computer language.
- Design and implement object oriented classes, using inheritance and polymorphism.
- Design and implement array based and linked data structures like: strings, stacks, queues, lists, trees, heaps, sets, dictionaries and graphs.
- Describe and implement common algorithms related to searching, sorting, traversals, and hashing.

TRANSFERABILITY:

Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at the Alberta Transfer Guide main page <u>http://www.transferalberta.co</u>.

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS:

Lab- Assignments	20%
Lab Quizzes (2-4)	20%
Lab Exam (1)	20%
Final Exam (1)	40%

GRADING CRITERIA: (The following criteria may be changed to suite the particular

course/instructor)

Please note that most universities will not accept your course for transfer credit **IF** your grade is **less than C**-.

Alpha Grade	4-point Equivalent	Percentage Guidelines	Alpha Grade	4-point Equivalent	Percentage Guidelines
A+	4.0	90-100	C+	2.3	67-69
А	4.0	85-89	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62
B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE/TENTATIVE TIMELINE:

Sequence	Торіс
Week 1	Objects and Classes: Chapter 9
	Defining Classes & Creating Objects
	Constructors, Static Variables and Methods
	Visibility Modifiers, Data Fields Encapsulation
	Array of Objects and Scope of Variables
Week 2	Object Oriented Thinking: Chapter 10
	Class Abstraction & Encapsulation
	Objects and Class Relationships
	Primitive Types and Wrapper Class Types
	String Class
Week 3,4	Quiz 1
	Inheritance and Polymorphism: Chapter 11
	Superclasses and Subclasses
	Overriding and Overloading
	Polymorphism
	Dynamic Binding
	Protected Data and Methods
	Preventing Extending and Overriding
Week 5	Exception Handling : Chapter 12
	Exception Types
	Use of Exceptions
	Re-throwing Exceptions and Chained Exceptions
	Custom Exception Classes

Week 6	Abstract Classes and Interfaces: Chapter 13			
	Abstract Classes			
	• Interfaces			
	Class Design Guidelines			
Week 7	Generics: Chapter 19			
	Defining Generic Classes and Interfaces			
	Generic Methods			
	Raw Types and Backward Compatibility			
	Wildcard Generic Types			
	Restriction in Generics			
Week 8	Review + Midterm			
Week 9	Developing Efficient Algorithms: Chapter 22			
	Algorithm Efficiency and Big O Notation			
	Analyzing Algorithm Time Complexity			
	Determining Big O			
	Introduction to Dynamic Programming			
Week 10,11	Linked Lists, Stack and Queues: Chapter 24			
	Common Operations for Lists			
	Array Lists			
	Linked Lists			
	Stack and Queues			
	Priority Queues			
	Quiz 2			
Week 12,13	Recursion, Searching and Sorting: Chapter 18, 23, 25			
	• Recursion			
	Insertion Sort, Bubble sort, Merge Sort, Quick Sort and Heap Sort			
	Binary Search Trees			
Week 14,15	Introduction to Hashing and Graphs: Chapter 27 and Chapter 28			

STUDENT RESPONSIBILITIES:

Assignments are to be handed in and/or demonstrated in the scheduled lab on the due-date. Late assignments will **not** be accepted.

Important Note: Students will be eligible for a passing grade only, if they obtain **40%** out of a possible 80% marks (on exams).

STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the College Calendar at <u>http://www.gprc.ab.ca/programs/calendar/</u> or the College Policy on Student Misconduct: Plagiarism and Cheating at <u>https://www.gprc.ab.ca/about/administration/policies</u>

**Note: all Academic and Administrative policies are available on the same page.