GRANDE PRAIRIE REGIONAL COLLEGE DEPARTMENT OF SCIENCE AND TECHNOLOGY 2004/2005

CHEMISTRY 1020: Introductory University Chemistry II
CONTACT HOURS: 3 Lecture hours per week; 1 Seminar hour per week; 3 Laboratory hours per week; Total of 105 contact hours

PREREQUISITE: CH1010 or equivalent
TRANSFER CREDITS: CH1020 to U. of Alberta CHEM 102, 3 credits CH1010/1020 to U. of Calgary CHEM 201/203, 6 credits

INSTRUCTOR: Les Rawluk Office J214 539-2738
EMAIL: lrawluk@gprc.ab.ca
WEBSITE: http://blackboard.gprc.ab.ca
OFFICE HOURS: Unrestricted
TEXT BOOK: Required: CHEMISTRY $6^{\text {th }}$ Edition
Steven S. Zumdahl and Susan A. Zumdahl
Houghton Mifflin Company © 2003
LABORATORY: Required lab manual: Introductory University Chemistry II (Chem 102 and 105), University of Alberta, 2004/2005
Lab coats and safety glasses are compulsory, and are available at the Bookstore.
A Laboratory Breakage Deposit of $\$ 30$ per Chemistry course must be paid to the Cashier (Room C315), and the receipt must be shown to the Laboratory Technician (Mrs. Omana Pillay) during the first Laboratory class.

SEMINAR: Seminars consist of problem solving, discussion of lecture materials, and a brief introduction to the upcoming Laboratory experiment. A short quiz will be part of most seminars.

COURSE EVALUATION

February Midterm 18%
March Midterm 18%
Final Exam 37%
Quizzes 5%
Laboratory Reports 12%
Laboratory Exam 10%

Alpha Grade	Approximate Percentage Conversion
A+	$90-100$
A	$85-89$
A-	$80-84$
B+	$76-79$
B	$73-75$
B-	$70-72$
C+	$67-69$
C	$64-66$
C-	$60-63$
D+	$55-59$
D	$50-54$
F	$0-49$

Assignments will be distributed on a weekly basis. Complete solutions will be available for the student in both hardcopy and electronic format. Completion of assignments is strongly recommended to succeed in the course.

Attendance to all lectures and seminars is strongly recommended. Laboratory attendance to each specific experiment is compulsory; a passing grade in the laboratory component is required to pass the course. A doctor's medical note is required for all excused absences!

Students must obtain an overall average of 50% or better to pass the course. Students are encouraged to participate in class discussions, and help is available outside the classroom. Appointments are not necessary.

According to GPRC policy (see page 37 of the 2004/2005 calendar), a repeat final examination will not be granted in this course.

CH1020 COURSE CONTENT

A: Chemical Kinetics Chapter 12 Pages 555-606
A. 1 Reaction rates
A. 2 Rate laws
A. 3 Determining rate law form
A. 4 Integrated rate law
A. 5 Arrhenius equation
A. 6 Reaction mechanisms
A. 7 Catalysis
B: Chemical Equilibrium Chapter 13 Pages 609-651
B. 1 Equilibrium condition
B. 2 Mass-action expression and the equilibrium constant
B. 3 Heterogeneous equilibria
B. 4 Applications of the equilibrium constant
B. 5 Le Châtelier's Principle
C: Acids and Bases Chapters 14 and 15 Pages 653-751
C. 1 The nature of acids and bases
C. 2 Acid strength and the pH scale
C. 3 Calculating the pH of strong/weak acids
C. 4 Bases
C. 5 Salts
C. 6 Mixtures of weak acids and bases
C. 7 Effect of structure upon acid strength
C. 8 Common ion effect
C. 9 Buffer systems
C. 10 Acid/base titrations
C. 11 Acid/base indicators
D: Solubility Equilibria Chapter 15 Pages 751-781
D. 1 Slightly soluble salts
D. 2 Complex ion equilibria
E: Thermochemistry Chapter 6 Pages 241-287
E. 1 Types of energy; work and heat; First Law of Thermodynamics
E. 2 Enthalpy-endothermic and exothermic processes
E. 3 Calorimetry
E. 4 Hess's Law
E. 5 Standard enthalpy of formation
F: ThermodynamicsChapter 16 Pages 783-825
F. 1 Entropy and the Second Law of Thermodynamics
F. 2 Entropy of the system and the surroundings
F. 3 Free energy
F. 4 Free energy and equilibrium

G: Electrochemistry
G. 1 Redox reactions and standard electrode potentials
G. 2 Galvanic cells and spontaneous redox reactions
G. 3 Cell potential, electrical work, and free energy
G. 4 Dependence on concentration-the Nernst equation
G. 5 Batteries
G. 6 Electrolytic cells

H: Transition Elements and Coordination Compounds
H. 1 Properties of the transition metals
H. 2 Coordination compounds
H. 3 Structure of coordination compounds
H. 4 Crystal field theory

